folie.functions.Linear

class folie.functions.Linear(domain=None, output_shape=(), coefficients=None)[source]

The linear function f(x) = c x

copy()[source]

Makes a deep copy of this function.

Returns:
copy

A new copy of this model.

fit(x, *args, y=None, estimator=LinearRegression(copy_X=False, fit_intercept=False), sample_weight=None, **kwargs)[source]

Fit coefficients of the function using linear regression. Use as features the derivative of the function with respect to the coefficients

Parameters:
X{array-like} of shape (n_samples, dim)
Point of evaluation of the training data
yarray-like of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X’s dtype if necessary.
estimator: sklearn compatible estimator
Defaut to sklearn.linear_model.LinearRegression(copy_X=False, fit_intercept=False) but any compatible estimator can be used.
Estimator should have a coef_ attibutes after fitting
fit_transform(X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:
Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns:
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_params(deep=False)[source]

Get the parameters.

Returns:
paramsmapping of string to any

Parameter names mapped to their values.

grad_coeffs(x, *args, **kwargs)[source]

Gradient of the function with respect to the coefficients.

Parameters:
xarray_like

Input data.

Returns:
transformedarray_like

The gradient

resize(new_shape)[source]

Change the output shape of the function.

Parameters:
new_shapetuple, array-like

The new output shape of the function

set_output(*, transform=None)[source]

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters:
transform{“default”, “pandas”, “polars”}, default=None

Configure output of transform and fit_transform.

  • “default”: Default output format of a transformer

  • “pandas”: DataFrame output

  • “polars”: Polars output

  • None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns:
selfestimator instance

Estimator instance.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfobject

Estimator instance.

transform(x, *args, **kwargs)[source]

Transforms the input data.

transform_d2x(x, *args, **kwargs)[source]

Hessian of the function with respect to input data. Implemented by finite difference.

transform_dx(x, *args, **kwargs)[source]

Gradient of the function with respect to input data. Implemented by finite difference.

property coefficients

Access the coefficients

Examples using folie.functions.Linear

Overdamped Langevin Estimation

Overdamped Langevin Estimation

Functional set

Functional set

Hidden Overdamped Langevin Estimation

Hidden Overdamped Langevin Estimation